Extensions 1→N→G→Q→1 with N=C32 and Q=C22⋊C4

Direct product G=N×Q with N=C32 and Q=C22⋊C4
dρLabelID
C32×C22⋊C472C3^2xC2^2:C4144,102

Semidirect products G=N:Q with N=C32 and Q=C22⋊C4
extensionφ:Q→Aut NdρLabelID
C32⋊(C22⋊C4) = S32⋊C4φ: C22⋊C4/C2D4 ⊆ Aut C32124+C3^2:(C2^2:C4)144,115
C322(C22⋊C4) = C62⋊C4φ: C22⋊C4/C22C4 ⊆ Aut C32124+C3^2:2(C2^2:C4)144,136
C323(C22⋊C4) = D6⋊Dic3φ: C22⋊C4/C22C22 ⊆ Aut C3248C3^2:3(C2^2:C4)144,64
C324(C22⋊C4) = C6.D12φ: C22⋊C4/C22C22 ⊆ Aut C3224C3^2:4(C2^2:C4)144,65
C325(C22⋊C4) = C3×D6⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Aut C3248C3^2:5(C2^2:C4)144,79
C326(C22⋊C4) = C6.11D12φ: C22⋊C4/C2×C4C2 ⊆ Aut C3272C3^2:6(C2^2:C4)144,95
C327(C22⋊C4) = C3×C6.D4φ: C22⋊C4/C23C2 ⊆ Aut C3224C3^2:7(C2^2:C4)144,84
C328(C22⋊C4) = C625C4φ: C22⋊C4/C23C2 ⊆ Aut C3272C3^2:8(C2^2:C4)144,100


׿
×
𝔽